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● Patent mining: Identify science references inside the patents

● Impact of science on technological advances

● Our focus: In-text Reference Extraction
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● No standard style of 
referencing

● Sequence Labeling Approach

○ BIO labels
○ Pre-trained BERT models

Problem Formulation
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● Verberne and Chios 2019[1]

○ Method: CRF and Flair models for reference extraction

○ Dataset: 22 patents from Google Patents

● Voskuli and Verberne 2021[2]

○ Method: BERT model for reference extraction

○ Dataset: Improved the quality of previous dataset

Previous Works
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Improving the reference extraction component

1) Multiple pre-trained BERT models, including patent-specific models

○ PatentBERT (The claims parts of the USPTO patents)
○ Bert for Patents (Complete text of patents, BERT-Large)
○ BioBERT
○ SciBERT (Scientific)
○ BERT

In-text Reference Extraction
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2) A more effective method for sequence splitting

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}: max 𝑛 | { 𝑡1 + 𝑡2 + 𝑡3 + … + 𝑡𝑛 <= 512}

3) Down sampling to cope with the class imbalance

○ 14,270 sequences where 8,530 of them have no ‘B’ or ‘I’ labels 

○ Imbalance between B/I labels and O label → A biased model

○ Eliminate the sequences with no B/I labels

In-text Reference Extraction
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4) Collecting a larger dataset from EPO and USPTO (On-going).

○ Consider utility patents after 1990 for sampling

○ A random sample of 4000 USPTO and 2000 EPO 

○ Hired 8 students for annotation

○ Manually annotating at least 600 of USPTO and 600 of EPO patents

In-text Reference Extraction
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Experiments
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Data: 22 patents dataset collected by Chios and Verberne (2019) [1]

○ Google Patents

○ Domain of Biotech

Evaluation: Leave-One-Out Cross-Validation 

Dataset and Evaluation
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● Model trained more smoothly 

● Sequences with no reference are less informative for the model 

Effect of Down Sampling
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• PatentBERT: Fine-tuned only on 
claims of patents, Uncased

• BERT for patents: Uncased

• Recall is more important

• Small scale and single-domain

Comparing BERT Models
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Future work
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Reference Extraction

○ Use new dataset (larger and more diverse)

○ Add other labels to dataset

○ Further pre-train the BERT cased model on patents

Reference Matching

○ Extracted references→ Scientific publications (Web of Science (WOS) database)

○ Text matching techniques for ambiguous matching

Future work
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Thanks!
Any Questions? 
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